83 research outputs found

    Potential gain from including major gene information in breeding value estimation

    Get PDF
    Two indexes were compared for the selection of a quantitative trait in the case of a mixed inheritance. The first index did not consider the major genotype information (standard method) whereas the second index took this information into account (modified method). Two types of selection scheme were considered: individual selection and selection based on a progeny test. The model for the estimation of genetic progress and evolution of allele frequencies takes overlapping generations into account. All of the effects studied suggested a large number of interactions. However, it can be concluded that information about the major gene should be put into the selection indexes when the heritability is low, the major gene effect high and its initial frequency small, in particular for a recessive major gene. The selection pressure has little influence on the results. In the short term, the modified method is of more value in the case of individual selection than in the case of selection based on a progeny test. On the whole, the extra genetic gain of the modified method is limited and considering the major genotypes in the selection indexes without any change of the selection scheme is probably not the best way to use this information.Le but de l’étude est de comparer l’application de deux indices dans le cas d’une sélection sur un caractère quantitatif soumis à l’effet d’un gène majeur. Dans le premier cas, l’indice ne prend pas en compte l’information sur le génotype au locus majeur (méthode standard) alors que le deuxième indice prend en compte cette information (méthode modifiée). Deux types de schémas sont considérés : sélection individuelle et sélection sur descendance. Le calcul du progrès génétique et de l’évolution des fréquences alléliques est réalisé pas à pas en considérant des générations chevauchantes. Tous les effets étudiés sur la supériorité de la méthode modifiée sur la méthode standard suggèrent de nombreuses interactions. Cependant, il ressort que la prise en compte de l’information sur le gène majeur dans l’indexation est avantageuse dans les cas de faible héritabilité, de fort effet du gène majeur et de faible proportion initiale de l’allèle favorable surtout lorsque cet allèle est récessif. Le taux de sélection n’a que peu d’influence sur les résultats. Enfin, l’intérêt de la méthode modifiée est plus visible et plus rapide dans la sélection individuelle que dans la sélection sur descendance. Il n’en demeure pas moins qu’en dehors des conditions extrêmes précédemment citées, l’intérêt de la méthode modifiée sur la méthode standard reste pour le moins limité et la prise en compte de l’information sur les génotypes au locus majeur dans l’indice de sélection, sans modification du schéma de sélection, ne constitue sûrement pas le meilleur outil de valorisation de cette information pour la sélection

    Review: Towards the agroecological management of ruminants, pigs and poultry through the development of sustainable breeding programmes. II. Breeding strategies

    Get PDF
    Agroecology uses ecological processes and local resources rather than chemical inputs to develop productive and resilient livestock and crop production systems. In this context, breeding innovations are necessary to obtain animals that are both productive and adapted to a broad range of local contexts and diversity of systems. Breeding strategies to promote agroecological systems are similar for different animal species. However, current practices differ regarding the breeding of ruminants, pigs and poultry. Ruminant breeding is still an open system where farmers continue to choose their own breeds and strategies. Conversely, pig and poultry breeding is more or less the exclusive domain of international breeding companies which supply farmers with hybrid animals. Innovations in breeding strategies must therefore be adapted to the different species. In developed countries, reorienting current breeding programmes seems to be more effective than developing programmes dedicated to agroecological systems that will struggle to be really effective because of the small size of the populations currently concerned by such systems. Particular attention needs to be paid to determining the respective usefulness of cross-breeding v. straight breeding strategies of well-adapted local breeds. While cross-breeding may offer some immediate benefits in terms of improving certain traits that enable the animals to adapt well to local environmental conditions, it may be difficult to sustain these benefits in the longer term and could also induce an important loss of genetic diversity if the initial pure-bred populations are no longer produced. As well as supporting the value of within-breed diversity, we must preserve between-breed diversity in order to maintain numerous options for adaptation to a variety of production environments and contexts. This may involve specific public policies to maintain and characterize local breeds (in terms of both phenotypes and genotypes), which could be used more effectively if they benefited from the scientific and technical resources currently available for more common breeds. Last but not least, public policies need to enable improved information concerning the genetic resources and breeding tools available for the agroecological management of livestock production systems, and facilitate its assimilation by farmers and farm technicians

    Meta-analysis of the effect of the halothane gene on 6 variables of pig meat quality and on carcass leanness

    Get PDF
    Technological meat quality is a significant economic factor in pork production, and numerous publications have shown that it is strongly influenced both by genetic status and by rearing and slaughter conditions. The quality of meat is often described by meat pH at different times postmortem, as well as by color and drip loss, whereas carcass quality is often characterized by lean percentage. A meta-analysis of findings relating to 3,530 pigs reported in 23 publications was carried out to assess the effects of the halothane gene, sex, breed, and slaughter weight of animals on 7 selected variables: pH at 45 min postmortem, ultimate pH, reflectance (L*-value), redness (a*-value), yellowness (b*-value), drip loss, and lean percentage. Two statistical methods were used in the meta-analysis: the method of effect size and the better known random effects model. The method of effect size was associated with Markov chain Monte Carlo techniques for implementing Bayesian hierarchical models to avoid the problems of limited data and publication bias. The results of our meta-analysis showed that the halothane genotype had a significant effect on all analyzed pork quality variables. Between-study variance was evaluated with the Cochran (1954) Q-test of heterogeneity. Meta-regression was used to explain this variance, with covariates such as breed, sex, slaughter weight, and fasting duration being integrated into different regression models. The halothane gene effect was associated with the breed effect only for the following variables: L*-value, b*-value, and drip loss. Slaughter weight contributed significantly only to the explanation of differences in ultimate pH between homozygous genotypes. In response to inconsistencies reported in the literature regarding the difference between the genotypes NN and Nn, results of the meta-analysis showed that the difference between these 2 genotypes was significant for all the analyzed variables except the a*-value

    Maternal and paternal genomes differentially affect myofibre characteristics and muscle weights of bovine fetuses at midgestation

    Get PDF
    Postnatal myofibre characteristics and muscle mass are largely determined during fetal development and may be significantly affected by epigenetic parent-of-origin effects. However, data on such effects in prenatal muscle development that could help understand unexplained variation in postnatal muscle traits are lacking. In a bovine model we studied effects of distinct maternal and paternal genomes, fetal sex, and non-genetic maternal effects on fetal myofibre characteristics and muscle mass. Data from 73 fetuses (Day153, 54% term) of four genetic groups with purebred and reciprocal cross Angus and Brahman genetics were analyzed using general linear models. Parental genomes explained the greatest proportion of variation in myofibre size of Musculus semitendinosus (80–96%) and in absolute and relative weights of M. supraspinatus, M. longissimus dorsi, M. quadriceps femoris and M. semimembranosus (82–89% and 56–93%, respectively). Paternal genome in interaction with maternal genome (P<0.05) explained most genetic variation in cross sectional area (CSA) of fast myotubes (68%), while maternal genome alone explained most genetic variation in CSA of fast myofibres (93%, P<0.01). Furthermore, maternal genome independently (M. semimembranosus, 88%, P<0.0001) or in combination (M. supraspinatus, 82%; M. longissimus dorsi, 93%; M. quadriceps femoris, 86%) with nested maternal weight effect (5–6%, P<0.05), was the predominant source of variation for absolute muscle weights. Effects of paternal genome on muscle mass decreased from thoracic to pelvic limb and accounted for all (M. supraspinatus, 97%, P<0.0001) or most (M. longissimus dorsi, 69%, P<0.0001; M. quadriceps femoris, 54%, P<0.001) genetic variation in relative weights. An interaction between maternal and paternal genomes (P<0.01) and effects of maternal weight (P<0.05) on expression of H19, a master regulator of an imprinted gene network, and negative correlations between H19 expression and fetal muscle mass (P<0.001), suggested imprinted genes and miRNA interference as mechanisms for differential effects of maternal and paternal genomes on fetal muscle.Ruidong Xiang, Mani Ghanipoor-Samami, William H. Johns, Tanja Eindorf, David L. Rutley, Zbigniew A. Kruk, Carolyn J. Fitzsimmons, Dana A. Thomsen, Claire T. Roberts, Brian M. Burns, Gail I. Anderson, Paul L. Greenwood, Stefan Hiendlede
    • …
    corecore